Prognozowanie ruchomej średniej formuły
Przenoszenie średniej prognozy Wprowadzenie. Jak można się spodziewać, patrzymy na niektóre z najbardziej prymitywnych podejść do prognozowania. Ale miejmy nadzieję, że są to co najmniej warte wstępu do niektórych zagadnień związanych z komputerem związanych z wdrażaniem prognoz w arkuszach kalkulacyjnych. W tym kontekście będziemy kontynuować od początku i rozpocząć pracę z prognozą Moving Average. Przenoszenie średnich prognoz. Wszyscy znają średnie ruchome prognozy niezależnie od tego, czy uważają, że są. Wszyscy studenci studiują je przez cały czas. Pomyśl o swoich testach w kursie, w którym podczas semestru będziesz miał cztery testy. Pozwala przyjąć, że masz 85 przy pierwszym testie. Jak oceniasz Twój drugi punkt testowy Co sądzisz, że Twój nauczyciel przewidziałby następny wynik testu Jak myślisz, że Twoi znajomi mogą przewidzieć następny wynik testu Jak myślisz, że twoi rodzice mogą przewidzieć następny wynik testu Niezależnie od tego, wszystkie blabbing, które możesz zrobić znajomym i rodzicom, to oni i nauczyciel bardzo oczekują, że dostaniesz coś w tej dziedzinie, którą właśnie dostałeś. No cóż, teraz pomyślmy, że pomimo twojej samoobrony do swoich znajomych, oszacujesz siebie i postanów, że możesz uczyć się mniej na drugim teście, a więc dostajesz 73. Teraz wszyscy zainteresowani i niezainteresowani idą przewiduj, że otrzymasz trzeci test Istnieją dwa bardzo prawdopodobne podejścia do nich, aby opracować szacunkowe niezależnie od tego, czy będą dzielić się nim z Tobą. Mogą powiedzieć sobie, ten facet zawsze dmucha o jego inteligencję. On będzie dostać kolejne 73, jeśli ma szczęście. Może rodzice będą starali się być bardziej pomocni i powiedzieli: "WELL", jak dotąd dostałeś 85 i 73, więc może powinieneś się dowiedzieć na temat (85 73) 2 79. Nie wiem, może gdybyś mniej imprezował i werent waha się weasel na całym miejscu i jeśli zacząłeś robić dużo więcej studiów można uzyskać wyższy score. qu Faktycznie oba te szacunki są w rzeczywistości przechodzą średnie prognozy. Pierwszy używa tylko swojego ostatniego wyniku, aby prognozować przyszłe wyniki. Nazywa się to ruchomą średnią prognozą przy użyciu jednego okresu danych. Druga to również średnia ruchoma, ale wykorzystująca dwa okresy danych. Pozwala przyjąć, że wszyscy ci ludzie popychają do twojego wielkiego umysłu, jakby się wkurzyli i postanowili dobrze wykonać trzeci test ze swoich własnych powodów i położyć większy wynik przed Twoimi notatkami. Robisz test, a Twój wynik jest w rzeczywistości 89 Wszyscy, łącznie z sobą, są pod wrażeniem. Więc teraz masz ostatni test semestru nadchodzącego i jak zwykle masz wrażenie, że musimy dać każdemu do swoich przepowiedni, jak zrobisz to w ostatnim teście. Mam nadzieję, że widzisz wzór. Teraz, miejmy nadzieję, widać wzór. Jaki jest Twój najlepszy gwizdek podczas pracy. Teraz wracamy do naszej nowej firmy zajmującej się sprzątaniem, która rozpoczęła się od twojej ukochanej siostry o nazwie Gwizdek podczas pracy. Masz dane z przeszłych sprzedaży przedstawione w następnej części arkusza kalkulacyjnego. Najpierw przedstawiamy dane dotyczące trzech okresowych prognoz średniej ruchomej. Wpisem dla komórki C6 powinno być Teraz możesz skopiować tę formułę komórki do innych komórek C7 do C11. Zauważ, jak średnia przenosi się do ostatnich danych historycznych, ale używa dokładnie trzech ostatnich okresów dostępnych dla każdego przewidywania. Warto też zauważyć, że nie musimy naprawdę przewidzieć z ostatnich okresów, aby rozwinąć nasze najnowsze prognozy. To zdecydowanie różni się od wyrafinowanego modelu wygładzania. Ive uwzględniła przewidywania kwotowania, ponieważ będziemy używać ich na następnej stronie internetowej w celu pomiaru ważności przewidywania. Teraz chcę przedstawić analogiczne wyniki dla dwóch okresów ruchomych średniej prognozy. Wpisem dla komórki C5 powinno być Teraz możesz skopiować tę formułę komórki do innych komórek C6 do C11. Zauważmy, że teraz tylko dwie ostatnie dane historyczne są wykorzystywane do każdego przewidywania. Znowu uwzględniono prognozy kwotowania dla celów ilustracyjnych i późniejsze wykorzystanie w walidacji prognozy. Inne ważne rzeczy do zauważenia. W przypadku prognozy średniej ruchomej w skali m wykorzystano tylko najmniejsze wartości danych, aby przewidzieć. Nic więcej nie jest konieczne. Jeśli chodzi o prognozę średniej ruchomej w okresie m, przy prognozowaniu kwotowania zauważ, że pierwsza predykcja występuje w okresie m 1. Zarówno te kwestie będą bardzo znaczące, gdy opracujemy nasz kod. Rozwój funkcji przeciętnej ruchomości. Teraz musimy opracować kod dla prognozy średniej ruchomej, którą można używać bardziej elastycznie. Kod jest następujący. Zauważ, że dane wejściowe są dla liczby okresów, których chcesz używać w prognozie i tablicach wartości historycznych. Można go przechowywać w dowolnej skoroszycie. Funkcja MovingAverage (Historical, NumberOfPeriods) jako pojedynczy Deklarowanie i inicjowanie zmiennych Dim Item as Variant Dim Counter jako Integer Dim Akumulacja jako pojedynczy Dim HistoricalSize jako Integer Inicjalizacja zmiennych Counter 1 Akumulacja 0 Określenie rozmiaru historycznej tablicy HistoricalSize Historical. Count Dla licznika 1 Do NumberOfPeriods Zbieranie odpowiedniej liczby ostatnich poprzednich wartości Accumulation Accumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Akumulacja NumberOfPeriods Kod zostanie wyjaśniony w klasie. Chcesz umieścić funkcję w arkuszu kalkulacyjnym, aby wynik obliczeń pojawił się tam, gdzie powinien on wyglądać następująco. Stworzenie średniej ruchomej ważonej w trzech krokach Przegląd przebiegu średniej Średnia średnia ruchoma jest techniką statystyczną wykorzystywaną do wygładzania krótkich, w celu łatwej identyfikacji długoterminowych trendów lub cykli. Średnia ruchoma jest czasami określana jako średnia krocząca lub średnia bieżąca. Średnia ruchoma to seria liczb, z których każda reprezentuje średnią z przedziału określonej liczby poprzednich okresów. Im większy odstęp, tym bardziej wygładza się. Im krótszy odstęp, tym bardziej, że średnia ruchoma przypomina rzeczywistą serię danych. Średnie ruchome spełniają trzy następujące funkcje: Wygładzanie danych, co oznacza poprawienie dopasowania danych do linii. Zmniejszenie wpływu tymczasowej zmienności i losowego szumu. Podkreślając wartości odstające powyżej lub poniżej trendu. Średnia ruchoma jest jedną z najszerzej używanych technik statystycznych w przemyśle w celu określenia trendów danych. Na przykład menedżerowie ds. Sprzedaży zazwyczaj widują średnie ruchome dane dotyczące sprzedaży sprzed trzy miesięcy. W artykule porównaj się dwa miesiące, trzy miesiące i sześć miesięcy proste średnie ruchome tych samych danych dotyczących sprzedaży. Średnia ruchoma jest stosowana dość często w technicznej analizie danych finansowych, takich jak zwrot z akcji i ekonomia w celu zlokalizowania trendów w szeregach czasowych makroekonomicznych, takich jak zatrudnienie. Istnieje wiele odmian średniej ruchomej. Najczęściej stosowaną jest prosta średnia ruchoma, ważona średnia ruchoma i wykładnicza średnia ruchoma. Wykonywanie każdej z tych technik w programie Excel będzie szczegółowo opisane w oddzielnych artykułach w tym blogu. Oto krótki przegląd każdej z tych trzech technik. Prosta średnia ruchoma Każdy punkt w prostej średniej ruchomej jest średnią określonej liczby poprzednich okresów. Łącze do innego artykułu z tego bloga, które zawiera szczegółowe wyjaśnienie implementacji tej techniki w programie Excel, przedstawia się następująco: Średnia ważona średnia ruchoma w ważonej średniej ruchomej również przedstawia średnią z określonej liczby poprzednich okresów. Ważona średnia ruchoma stosuje różne wagi do pewnych poprzednich okresów dość często, przy czym ostatnie okresy mają większą wagę. Ten artykuł na blogu dostarczy szczegółowe wyjaśnienie implementacji tej techniki w programie Excel. Punkty średnie ruchome wyrównawcze w średniej ruchomej stanowią również średnią z określonej liczby poprzednich okresów. Wyrównywanie wykładnicze stosuje współczynniki ważenia do poprzednich okresów, które zmniejszają się wykładniczo, nigdy nie osiągając zera. W efekcie wyrównywanie wykładnicze uwzględnia wszystkie poprzednie okresy zamiast wyznaczonej liczby poprzednich okresów, w których ważona średnia ruchoma. Link do innego artykułu w tym blogu, który zawiera szczegółowe wyjaśnienie implementacji tej techniki w programie Excel, przedstawia się następująco: Poniżej przedstawiono trzyetapowy proces tworzenia ważonej średniej ruchomej danych z serii czasowych w programie Excel: Krok 1 8211 Wykresuj oryginalne dane w wykresie czasowym Wykres liniowy jest najczęściej stosowanym wykresem programu Excel w celu analizy danych z serii czasowych. Przykład takiego wykresu programu Excel służącego do wykreślania 13 okresów sprzedaży przedstawia się następująco: Krok 2 8211 Utwórz średnią ruchową ważoną ze wzorami w programie Excel Program Excel nie dostarcza narzędzia "Przechowywanie średnie" w menu Analiza danych, tak aby formuły muszą być skonstruowane ręcznie. W tym przypadku średnia ważona średnią ruchoma 2-przerwy jest tworzona przez zastosowanie wagi 2 do ostatniego okresu i wagi 1 do okresu poprzedzającego to. Wzór w komórce E5 można skopiować do komórki E17. Krok 3 8211 Dodać przestawione średnio ważone serie do wykresu Dane te należy teraz dodać do wykresu zawierającego pierwotną linię czasu danych sprzedaży. Dane zostaną po prostu dodane jako kolejne serie danych na wykresie. Aby to zrobić, kliknij prawym przyciskiem myszy dowolne miejsce na wykresie i pojawi się menu. Wybierz Dane, aby dodać nową serię danych. Średnia ruchomych serii zostanie dodana, uzupełniając okno dialogowe Edytuj serie w następujący sposób: Wykres zawierający oryginalne serie danych i średnia ważona z przecinkami danych 2 828 is jest wyświetlana w następujący sposób. Zauważ, że średnia ruchoma jest dosyć gładsza i surowe dane odchyłek powyżej i poniżej linii trendu są znacznie bardziej widoczne. Ogólny trend jest teraz znacznie bardziej widoczny. Na wykresie można utworzyć i umieścić na wykresie 3-interwałową średnią, stosując prawie tę samą procedurę, jak poniżej. Należy pamiętać, że ostatni okres jest przypisany do wagi 3, okresu poprzedzającego to przypisanie i wagi 2, a okresowi poprzedzemu przypisano wagę 1. Te dane należy teraz dodać do wykresu zawierającego oryginał linię czasu danych o sprzedaży wraz z serią 2-interwałów. Dane zostaną po prostu dodane jako kolejne serie danych na wykresie. Aby to zrobić, kliknij prawym przyciskiem myszy dowolne miejsce na wykresie i pojawi się menu. Wybierz Dane, aby dodać nową serię danych. Ruchome serie średnie zostaną dodane, uzupełniając okno dialogowe Edytuj serie w następujący sposób: Zgodnie z oczekiwaniami, nieco bardziej wygładzanie występuje z 3-interwałową ważoną średnią ruchoma niż w przypadku średniej ważonej średniej ruchomej w dwóch odstępach. Dla porównania obliczona będzie średnia ważona z 6-interwałem ważona i dodana do wykresu w ten sam sposób, jak poniżej. Zwróć uwagę, że stopniowo malejące wagi przypisane jako okresy stają się coraz dalekie w przeszłości. Dane te należy teraz dodać do wykresu zawierającego pierwotną linię czasu danych sprzedaży wraz z seriami przedziału 2 i 3. Dane zostaną po prostu dodane jako kolejne serie danych na wykresie. Aby to zrobić, kliknij prawym przyciskiem myszy dowolne miejsce na wykresie i pojawi się menu. Wybierz Dane, aby dodać nową serię danych. Ruchome przeciętne serie zostaną dodane, uzupełniając pole dialogowe Edytuj serie w następujący sposób: Zgodnie z oczekiwaniami średnia ważona średniej ruchomej w skali 6 jest znacznie płynniejsza niż średnie ruchome ważone od 2 do 3. Gładszy wykres bardziej zbliża się do prostej. Analiza dokładności prognozy Dwie składowe prognozowanej dokładności są następujące: Prognoza Bias 8211 Skłonność prognozy jest stale wyższa lub niższa niż rzeczywiste wartości szeregów czasowych. Prognoza stronniczości to suma wszystkich błędów podzielona przez liczbę okresów w następujący sposób: Pozytywna tendencja wskazuje tendencję do niedociągnięcia. Negatywne nastawienie wskazuje na tendencję do nadmiernej prognozy. Bias nie mierzy dokładności, ponieważ błędy dodatnie i ujemne wzajemnie się wycofują. Prognoza Błąd 8211 Różnica między rzeczywistymi wartościami serii czasowej a prognozowanymi wartościami prognozy. Najczęstsze pomiary błędu prognozy są następujące: MAD 8211 Średnia odchylenie bezwzględne MAD oblicza średnią wartość bezwzględną błędu i oblicza następującą formułę: Średnie wartości błędów eliminują efekt anulowania dodatnich i ujemnych błędów. Im mniejsza jest MAD, tym lepszy jest model. MSE 8211 Średni błąd kwadratowy MSE jest popularnym miernikiem błędu, który eliminuje efekt anulowania dodatnich i ujemnych błędów przez sumowanie kwadratów błędu o następującym wzorze: Duże wyrażenia błędów mają tendencję do przesadzania MSE, ponieważ wszystkie wyrażenia błędów są kwadratowane. RMSE (Root Square Mean) zmniejsza ten problem, biorąc pierwiastek kwadratowy MSE. MAPE 8211 Średni błąd procentu bezwzględnego MAPE eliminuje również efekt anulowania dodatnich i ujemnych błędów przez zsumowanie wartości bezwzględnych błędów. MAPE oblicza sumę procentów błędów o następującym wzorze: Podsumowując procent błędów, MAPE można porównać do modeli prognozowania, które wykorzystują różne skalę pomiaru. Obliczanie stronniczości, MAD, MSE, RMSE i MAPE w programie Excel W przypadku ważonych ruchów średnich stron obliczeń, MAD, MSE, RMSE i MAPE zostaną obliczone w programie Excel, aby ocenić przestawienie ważenia przerywanego w odstępie 2, 3 i, średnia prognoza uzyskana w tym artykule i pokazana w następujący sposób: Pierwszym krokiem jest wyliczenie t. E t 2. E t, E t Y t-act. a następnie podsumować w następujący sposób: Bias, MAD, MSE, MAPE i RMSE można obliczyć w następujący sposób: Te same obliczenia są teraz wykonywane w celu obliczenia Bias, MAD, MSE, MAPE i RMSE dla średniej ruchomej ważonej z interwałem 3. Bias, MAD, MSE, MAPE i RMSE można obliczyć w następujący sposób: Te same obliczenia są teraz przeprowadzane w celu obliczenia Bias, MAD, MSE, MAPE i RMSE dla średniej ruchomej ważonej z przerwami w skali 6. Bias, MAD, MSE, MAPE i RMSE można obliczyć w następujący sposób: Bias, MAD, MSE, MAPE i RMSE podsumowano dla średnich ważonych przecinków 2-przedziałowych, 3-przedziałowych i 6 ważonych w następujący sposób. Średnia średnica ruchoma ważona 2-interwałem jest modelem najbardziej zbliżonym do rzeczywistych danych, jak można by oczekiwać. 160 Główne tematy pakietu Excel Master Blog Tematy statystyczne i artykuły W każdym temacieMocowanie średnich i wykładniczych modeli wygładzania Jako pierwszy krok w wychodzeniu poza średnie modele, modele swobodnego chodzenia i modele trendów liniowych, nieuzasadnione wzorce i trendy mogą być ekstrapolowane przy użyciu średniej ruchomej lub model wygładzania. Podstawowym założeniem za modelami uśredniania i wygładzania jest to, że szereg czasowy jest lokalnie stacjonarny, a powoli zmienia się średnio. W związku z tym bierzemy ruchomą (lokalną) średnią w celu oszacowania bieżącej wartości średniej, a następnie użyć jej jako prognozy na najbliższą przyszłość. Można to uznać za kompromis między średnim modelem a modelem losowego chodzenia bez dryfu. Ta sama strategia może być wykorzystana do oszacowania i ekstrapolacji lokalnego trendu. Średnia ruchoma jest często określana jako quotsmoothedquot wersja pierwotnej serii, ponieważ uśrednianie krótkotrwałe ma efekt wyrównywania uderzeń w oryginalnej serii. Dostosowując stopień wygładzania (szerokość średniej ruchomej), możemy mieć nadzieję na osiągnięcie jakiegoś optymalnego balansu między osiągnięciem modelu średniej i losowej. Najprostszym modelem uśredniania jest. Prosta (równoważona wagą) Średnia ruchoma: Prognoza dla wartości Y w czasie t1, która jest wykonana w czasie t równa się zwykłej średniej z ostatnich obserwacji m: (Tutaj i gdzie indziej będę używać symbolu 8220Y-hat8221 dla prognozowania serii czasowej Y dokonanej najwcześniej w poprzednim terminie przez dany model). Ta średnia jest wyśrodkowana w okresie t - (m1) 2, co oznacza, że oszacowanie lokalnej średniej będzie miało tendencję do opóźnienia w stosunku do prawdziwych wartość lokalnej średniej o około (m1) 2 okresów. Tak więc mówimy, że średni wiek danych w prostej średniej ruchomej wynosi (m1) 2 w stosunku do okresu, na który obliczana jest prognoza: jest to ilość czasu, w jakim prognozy będą się spóźniały za punktami zwrotnymi w danych . Na przykład, jeśli uśrednimy ostatnie 5 wartości, prognozy będą wynosić około 3 okresy późne w odpowiedzi na punkty zwrotne. Zauważ, że jeśli m1, model prostego ruchu średniego (SMA) odpowiada modelowi losowego chodzenia (bez wzrostu). Jeśli m jest bardzo duża (porównywalna z długością okresu szacowania), model SMA jest równoważny średniemu modelowi. Podobnie jak w przypadku dowolnego parametru modelu prognozowania, zwykle dostosowywana jest wartość k w celu uzyskania najlepszej jakości danych, tzn. Najmniejszych średnich błędów prognozy. Oto przykład serii, która wydaje się wykazywać losowe fluktuacje wokół średniej wolno zmieniającej. Po pierwsze, spróbuj dopasować go do modelu przypadkowego spaceru, co odpowiada prostej średniej ruchomej z jednej kadencji: model losowego spaceru reaguje bardzo szybko na zmiany w serii, ale w ten sposób robi to znacznie pobudzając kwintesencję dane (losowe fluktuacje), jak również kwotsignalquot (lokalna średnia). Jeśli weźmiemy pod uwagę prostą średnią ruchomą wynoszącą 5 terminów, otrzymamy gładszy zestaw prognoz: 5-letnia prosta średnia ruchoma daje w tym przypadku znacznie mniejsze błędy niż model losowego chodu. Przeciętny wiek danych w tej prognozie wynosi 3 ((51) 2), co oznacza, że ma tendencję do pozostawania za punktami zwrotnymi przez około trzy okresy. (Na przykład spadek koniunktury wydaje się występować w okresie 21, ale prognozy nie odwracają się do kilku okresów później). Zauważ, że długoterminowe prognozy modelu SMA to poziome linie proste, podobnie jak w przypadku losowego spaceru Model. Tak więc, model SMA zakłada, że nie ma tendencji w danych. Jednakże, mając na uwadze, że prognozy z modelu losowego spaceru są po prostu równoważne ostatniej obserwowanej wartości, prognozy z modelu SMA są równe średniej ważonej ostatnich wartości. Ograniczenia ufności obliczone przez Statgraphics w odniesieniu do długoterminowych prognoz dotyczących prostej średniej ruchomej nie są szersze, gdy horyzont prognoz wzrasta. To oczywiście nie jest poprawne Niestety, nie ma podstawowej teorii statystycznej, która mówi nam, jak przedziały ufności powinny poszerzać się w tym modelu. Nie jest jednak zbyt trudno obliczyć empirycznych szacunków dopuszczalnych granic dla prognoz długoterminowych. Na przykład można utworzyć arkusz kalkulacyjny, w którym model SMA byłby wykorzystywany do prognozowania 2 kroków naprzód, 3 kroków naprzód itp. W ramach historycznej próbki danych. Następnie można obliczyć próbkowe odchylenia standardowe błędów w każdym horyzoncie prognozy, a następnie skonstruować interwały zaufania dla prognoz długoterminowych przez dodawanie i odejmowanie wielokrotności odpowiedniego odchylenia standardowego. Jeśli będziemy próbować 9-letniej prostej średniej ruchomej, otrzymamy jeszcze gładsze prognozy i bardziej opóźniamy: średni wiek wynosi obecnie 5 okresów ((91) 2). Jeśli weźmiemy 19-letnią średnią ruchliwą, średni wiek wzrośnie do 10: Zauważ, że prognozy są już za punktami zwrotnymi o około 10 okresów. Która suma wygładzania jest najlepsza dla tej serii Poniżej znajduje się tabela porównująca ich statystykę błędów, w tym również średnia 3-letnia: Model C, 5-letnia średnia ruchoma, daje najniższą wartość RMSE przez mały margines w ciągu 3 średnie i średnie 9-dniowe oraz inne statystyki są niemal identyczne. Wśród modeli o bardzo podobnych statystykach błędów możemy wybrać, czy wolelibyśmy nieco lepiej reagować lub trochę bardziej sprawnie. (Powtórz początek strony). Browns Simple Exponential Smoothing (średnia wykładana ważona średnią ruchoma) Opisany powyżej prosty model średniej średniej ma niepożądaną właściwość, która traktuje ostatnie obserwacje równomiernie i całkowicie ignoruje wszystkie poprzednie obserwacje. Intuicyjnie dane z przeszłości powinny być dyskontowane w sposób bardziej stopniowy - na przykład ostatnie obserwacje powinny mieć nieco więcej niż druga ostatnia, a druga ostatnia powinna być nieco większa niż ostatnia z trzech, a wkrótce. Dokonuje tego prostokątny wygładzający (SES). Niech 945 oznacza stałą kwotową konsystencji (liczba między 0 a 1). Jednym ze sposobów zapisania modelu jest zdefiniowanie serii L, która reprezentuje aktualny poziom (tzn. Średnia wartość lokalna) szeregu szacowana na podstawie danych do dnia dzisiejszego. Wartość L w czasie t obliczana jest rekurencyjnie z własnej poprzedniej wartości: W ten sposób bieżąca wygładzona wartość jest interpolacją pomiędzy poprzednią wygładzoną wartością a bieżącą obserwacją, gdzie 945 kontroluje bliskość interpolowanej wartości do najnowszej obserwacja. Prognoza na następny okres jest po prostu aktualną wygładzoną wartością: równoważnie możemy wyrazić następną prognozę bezpośrednio w odniesieniu do poprzednich prognoz i wcześniejszych obserwacji w dowolnej z następujących równoważnych wersji. W pierwszej wersji prognoza jest interpolacją między poprzednią prognozą a poprzednią obserwacją: w drugiej wersji następna prognoza uzyskuje się przez dostosowanie poprzedniej prognozy w kierunku poprzedniego błędu w ułamkowej wartości 945. jest błędem dokonanym w czas t. W trzecim projekcie prognoza jest średnią ruchoma ważoną wykładnicą (tzn. Zdyskontowaną) z współczynnikiem dyskontowania 1 - 945: wersja interpolacyjna formuły prognozowania jest najprostszym sposobem użycia, jeśli model jest wdrażany w arkuszu kalkulacyjnym: jest on dopasowany do pojedynczą komórkę i zawiera odwołania do komórek wskazujące na poprzednią prognozę, wcześniejsze obserwacje oraz komórkę, w której przechowywana jest wartość 945. Zauważ, że jeśli 945 1, model SES jest równoważny modelowi losowego spaceru (bez wzrostu). Jeśli 945 0, model SES jest odpowiednikiem średniego modelu, zakładając, że pierwsza wygładzona wartość jest równa średniej. (Powrót na górę strony.) Przeciętny wiek danych w prognozie wygładzania według wykładników prostych i wykładniczych wynosi 1 945 w stosunku do okresu, w którym obliczana jest prognoza. (Nie powinno to być oczywiste, ale można to łatwo wykazać przez ocenę nieskończonej serii). W związku z tym, prosta średnia ruchoma przebiega za punktami zwrotnymi przez około 1 945 okresów. Na przykład, gdy 945 0,5 opóźnienie to 2 okresy, gdy 945 0,2 opóźnienie wynosi 5 okresów, gdy 945 0,1 opóźnienia wynosi 10 okresów itd. Dla pewnego przeciętnego wieku (czyli ilości opóźnień), prosta prognoza wygładzania wykładniczego (SES) jest nieco lepsza od prognozy SMA (Simple moving average), ponieważ w ostatniej obserwacji obserwuje się relatywnie większą wagę. jest nieco bardziej odpowiadający na zmiany zachodzące w niedawnej przeszłości. Na przykład model SMA z 9 terminami i model SES z 945 0.2 mają średni wiek 5 lat dla danych w ich prognozach, ale model SES daje większą wagę w stosunku do ostatnich 3 wartości niż model SMA i na poziomie w tym samym czasie nie robi nic 8220forget8221 o wartościach powyżej 9 okresów, jak pokazano na poniższym wykresie: Inną ważną zaletą modelu SES w modelu SMA jest to, że model SES wykorzystuje parametr wygładzania, który jest ciągle zmienny, dzięki czemu można z łatwością zoptymalizować za pomocą algorytmu quotsolverquot w celu zminimalizowania średniego kwadratu. Optymalna wartość 945 w modelu SES dla tej serii okazała się wynosić 0.2961, jak pokazano poniżej: średni wiek danych w tej prognozie to 10.2961 3.4 okresy, które są podobne do średniej 6-letniej prostej średniej ruchomej. Długoterminowe prognozy z modelu SES są poziomej prostej. jak w modelu SMA i modelu przypadkowego spacerowania bez wzrostu. Należy jednak pamiętać, że przedziały ufności obliczane przez Statgraphics różnią się w rozsądny sposób i że są one znacznie węższe niż przedziały ufności dla modelu losowego spaceru. Model SES zakłada, że seria jest nieco bardziej przewidywalna niż model losowego chodu. Model SES jest faktycznie szczególnym przypadkiem modelu ARIMA. tak więc statystyczna teoria modeli ARIMA stanowi solidną podstawę do obliczania przedziałów ufności dla modelu SES. W szczególności model SES jest modelem ARIMA z odmienną różniczką, terminem MA (1), a nie terminem stałym. inaczej znany jako model quotARIMA (0,1,1) bez stałej ilości. Współczynnik MA (1) w modelu ARIMA odpowiada ilościowi 1- 945 w modelu SES. Na przykład, jeśli dopasujesz model ARIMA (0,1,1) bez stałej do analizowanej serii, szacowany współczynnik MA (1) okazuje się wynosić 0.7029, czyli prawie dokładnie minus minus 0.2961. Możliwe jest dodanie założenia niezerowej stałej tendencji liniowej do modelu SES. W tym celu wystarczy podać model ARIMA z jedną różniczkową różnicą i terminem MA (1) ze stałą, tj. Model ARIMA (0,1,1) ze stałą. Prognozy długoterminowe będą wtedy miały tendencję, która jest równa średniej tendencji obserwowanej w całym okresie szacunkowym. Nie można tego zrobić w połączeniu z dostosowaniem sezonowym, ponieważ opcje dopasowania sezonowego są wyłączone, gdy typ modelu jest ustawiony na ARIMA. Można jednak dodać stałą długoterminową tendencję wykładniczą do prostego modelu wygładzania wykładniczego (z korektą sezonową lub bez), korzystając z opcji regulacji inflacji w procedurze prognozowania. Odpowiednia szybkość wzrostu kwotowania (stopa wzrostu procentowego) w danym okresie może być oszacowana jako współczynnik nachylenia w modelu liniowego tendencji dopasowany do danych w połączeniu z naturalną transformacją logarytmiczną lub może opierać się na innych, niezależnych informacjach dotyczących długoterminowych perspektyw wzrostu . (Powrót na początek strony). Browns Linear (tj. Podwójne) Wyrównywanie wykładnicze Modele SMA i modele SES zakładają, że w danych nie ma żadnego trendu (co zwykle jest OK lub przynajmniej nie jest zbyt złe dla 1- prognozy stopniowe, gdy dane są stosunkowo hałaśliwe) i można je zmodyfikować, aby uwzględnić stały trend liniowy, jak pokazano powyżej. Co z trendami krótkoterminowymi Jeśli seria wykazuje zróżnicowaną stopę wzrostu lub cykliczny wzór wyraźnie wyróżniający się w stosunku do hałasu, a jeśli istnieje potrzeba prognozowania więcej niż jednego okresu, szacunek lokalnej tendencji może być również problem. Prosty model wygładzania wykładniczego można uogólnić w celu uzyskania liniowego modelu wygładzania wykładniczego (LES), który oblicza lokalne szacunki zarówno poziomu, jak i tendencji. Najprostszym modelem trendów jest Browns liniowy model wygładzania wykładniczego, który wykorzystuje dwie różne wygładzone serie, które są wyśrodkowane w różnych punktach w czasie. Formuła prognozy opiera się na ekstrapolacji linii przez dwa centra. (Poniżej omówiono bardziej wyrafinowaną wersję tego modelu, Holt8217). Algorytm liniowy linearyzacji Brown8217s, podobnie jak model prostokątnego wygładzania, może być wyrażony w wielu różnych, ale równoważnych formach. Niewątpliwą formą tego modelu jest zwykle wyrażona w następujący sposób: Niech S oznacza pojedynczo wygładzoną serię otrzymaną przez zastosowanie prostego wygładzania wykładniczego do serii Y. Oznacza to, że wartość S w okresie t jest wyrażona przez: (Przypomnijmy, że według prostego wyrównywanie wykładnicze, to byłaby prognoza dla Y w okresie t1). Pozwólmy, by Squot oznaczał podwójnie wygładzoną serię otrzymaną przez zastosowanie prostego wygładzania wykładniczego (używając tego samego 945) do serii S: wreszcie prognoza dla Y tk. dla każdego kgt1, podaje: Otrzymuje e 1 0 (to znaczy trochę oszukiwać, a pierwsza prognoza jest równa faktycznej pierwszej obserwacji) i e 2 Y 2 8211 Y 1. po których generowane są prognozy przy użyciu powyższego wzoru. Daje to takie same wartości, jak wzór na podstawie S i S, jeśli te ostatnie zostały uruchomione przy użyciu S 1 S 1 Y 1. Ta wersja modelu jest używana na następnej stronie, która ilustruje kombinację wygładzania wykładniczego z dostosowaniem sezonowym. Model LES firmy Holt8217s oblicza lokalny szacunek poziomu i trendu, wygładając ostatnie dane, ale fakt, że wykonuje to za pomocą pojedynczego parametru wygładzania, ogranicza wzorce danych, które można dopasować: poziom i trend nie mogą zmieniać się w niezależnych stawkach. Model LES firmy Holt8217s rozwiązuje ten problem przez uwzględnienie dwóch stałych wygładzania, po jednym dla poziomu i jednego dla tego trendu. W dowolnym momencie t, podobnie jak w modelu Brown8217s, szacuje się, że na poziomie lokalnym jest szacunkowa t t lokalnego trendu. Tutaj są obliczane rekurencyjnie z wartości Y obserwowanej w czasie t oraz poprzednich szacunków poziomu i tendencji przez dwa równania, które nakładają na siebie wyrównywanie wykładnicze. Jeśli szacowany poziom i tendencja w czasie t-1 to L t82091 i T t-1. odpowiednio, wówczas prognoza dla Y tshy, która została dokonana w czasie t-1, jest równa L t-1 T t-1. Gdy rzeczywista wartość jest zaobserwowana, zaktualizowany szacunek poziomu jest obliczany rekurencyjnie przez interpolowanie pomiędzy Y tshy a jego prognozą, L t-1 T t-1, przy użyciu odważników 945 i 1 945. Zmiana szacowanego poziomu, mianowicie L t 8209 L t82091. można interpretować jako hałasujący pomiar tendencji w czasie t. Zaktualizowane oszacowanie trendu jest następnie obliczane rekurencyjnie przez interpolowanie pomiędzy L t 8209 L t82091 a poprzednim oszacowaniem tendencji T t-1. przy użyciu odważników 946 i 1-946: Interpretacja stałej 946 wyrównania tendencji jest analogiczna do stałej stymulacji 945. Modele o małych wartościach 946 zakładają, że tendencja zmienia się bardzo powoli w czasie, podczas gdy modele z większy rozmiar 946 zakłada, że zmienia się szybciej. Model z dużą liczbą 946 uważa, że dalsza przyszłość jest bardzo niepewna, ponieważ błędy w oszacowaniu tendencji stają się bardzo ważne, gdy prognozuje się więcej niż jeden rok. (Powrót na początek strony). Stałe wygładzania 945 i 946 można oszacować w zwykły sposób minimalizując średnie kwadratowe błędy prognoz na jeden etap. Gdy to nastąpi w Statgraphics, szacunki wyniosły 945 0,3048 i 946 0,008. Bardzo mała wartość 946 oznacza, że model zakłada bardzo niewielką zmianę tendencji z jednego okresu do następnego, więc w zasadzie ten model próbuje oszacować długoterminowy trend. Przez analogię do pojęcia średniego wieku danych używanych do oszacowania lokalnego poziomu szeregu, średni wiek danych wykorzystywanych do oszacowania tendencji lokalnej jest proporcjonalny do 1 946, chociaż nie jest dokładnie taki sam . W tym przypadku okazuje się, że jest to 10.006 125. Jest to bardzo dokładna liczba, ponieważ dokładność szacowania 946 isn8217t rzeczywiście wynosi 3 miejsca po przecinku, ale ma ten sam ogólny porządek wielkości jak wielkość próbki 100, ten model uśrednia wiele historii w szacowaniu tendencji. Poniższa wykres prognozuje, że model LES szacuje nieco większą tendencję lokalną na końcu serii niż stała tendencja szacowana w modelu SEStrend. Ponadto szacowana wartość 945 jest niemal identyczna z uzyskaną przez dopasowanie modelu SES do trendu lub bez, więc jest to prawie ten sam model. Teraz wyglądają jak rozsądne prognozy modelu, które ma oszacować trend lokalny Jeśli wygląda to na wykresie, wygląda na to, że lokalny trend spadł na koniec serii Co się stało Parametry tego modelu zostały oszacowane przez zminimalizowanie kwadratu błędów prognoz na jeden etap, a nie prognoz długoterminowych, w których to przypadku tendencja ta ma wiele różnic. Jeśli wszystko, na co patrzysz, to błędy z jednopodstawowym wyprzedzeniem, nie widzisz większego obrazu trendów w ciągu 10 lub 20 okresów (powiedzmy). Aby uzyskać ten model bardziej zgodny z naszą ekstrapolacją danych oczu, możemy ręcznie dostosować stałą wygładzania trendu, tak aby używała krótszej linii odniesienia dla szacowania tendencji. Na przykład, jeśli zdecydujemy się ustawić 946 0.1, średni wiek danych wykorzystywanych do oszacowania tendencji lokalnej to 10 okresów, co oznacza, że uśrednimy tendencję w ciągu ostatnich 20 okresów. Here8217s jak wygląda prognoza wykresu, jeśli ustawimy 946 0.1 przy zachowaniu 945 0.3. To wydaje się intuicyjnie rozsądne w tej serii, chociaż najprawdopodobniej jest to niebezpieczne, aby wyliczyć tę tendencję w przyszłości o więcej niż 10 okresów. Co ze statystykami o błędach Oto porównanie modelu dwóch modeli przedstawionych powyżej oraz trzech modeli SES. Optymalna wartość 945 dla modelu SES wynosi około 0,3, ale uzyskuje się podobne wyniki (z nieco większą lub mniejszą reakcją) przy 0,5 i 0,2. (A) Holts liniowy exp. wygładzanie z alfa 0,3048 i beta 0,008 (B) liniowe liniowe exp. wygładzanie za pomocą alfa 0.3 i beta 0.1 (C) proste wyrównywanie wykładnicze z alfa 0.5 (D) proste wyrównywanie wykładnicze z alfa 0.3 (E) proste wyrównywanie wykładnicze z alfa 0.2 ich statystyka jest prawie identyczna, więc naprawdę możemy8217t dokonać wyboru na podstawie Błędy prognozy dotyczące etapu wyprzedzania w ramach próbki danych. Musimy pogodzić się z innymi względami. Jeśli uważamy, że sensowne jest oparcie bieżącej tendencji szacunkowej na to, co wydarzyło się w ciągu ostatnich 20 okresów, możemy zrobić przypadek modelu LES z 945 0,3 i 946 0,1. Jeśli chcemy być agnostyczni, czy istnieje tendencja lokalna, jeden z modeli SES może być łatwiejszy do wyjaśnienia, a także dałby więcej prognoz średniej wielkości na najbliższe 5 lub 10 okresów. (Powrót na początek strony.) Który typ tendencji - ekstrapolacja jest najlepsza: pozioma lub liniowa Dane empiryczne sugerują, że jeśli dane zostały już skorygowane (jeśli to konieczne) dla inflacji, może okazać się nieprzejrzyste ekstrapolacja krótkoterminowych liniowych trendy bardzo daleko w przyszłość. Trendy widoczne dziś mogą się spowolnić w przyszłości ze względu na różne przyczyny, takie jak nieaktualność produktu, zwiększona konkurencja i cykliczne spowolnienie gospodarcze lub wzrost w przemyśle. Z tego powodu prosty wygładzanie wykładnicze często wykonuje lepszą próbę, niż można by oczekiwać inaczej, pomimo ekstrapolacji tendencji poziomej. Często w praktyce często stosuje się modyfikacje trendu tłumiącego liniowego modelu wygładzania wykładniczego, aby w praktyce wprowadzić do konserwacji swój zapis konserwatyzmu. Model "LES" z tendencjami tłumionymi może być realizowany jako szczególny przypadek modelu ARIMA, w szczególności modelu ARIMA (1,1,2). Możliwe jest obliczanie przedziałów ufności wokół prognoz długoterminowych wytworzonych przez wykładnicze modele wygładzania, biorąc pod uwagę je jako szczególne przypadki modeli ARIMA. (Uwaga: nie wszystkie programy obliczają prawidłowe przedziały ufności dla tych modeli.) Szerokość przedziałów ufności zależy od (i) błędu RMS modelu, (ii) rodzaju wygładzania (prostego lub liniowego) (iii) wartości (-ów) wygładzania (a) i (iv) liczbę prognozowanych okresów. Ogólnie rzecz biorąc, odstępy czasowe rozciągają się szybciej, gdy 945 staje się większe w modelu SES i rozciągają się znacznie szybciej, gdy stosuje się linearne, a nie proste wygładzanie. Ten temat jest omówiony w dalszej części sekcji ARIMA w uwagach. (Powróć na początek strony.) Przykłady prognozowania obliczeń A.1 Metody obliczania prognozy Dostępne są 12 metod obliczania prognoz. Większość z tych metod zapewnia ograniczoną kontrolę nad użytkownikami. Na przykład można określić wagę umieszczoną na ostatnich danych historycznych lub zakresach danych historycznych używanych w obliczeniach. Następujące przykłady przedstawiają procedurę obliczania dla każdego z dostępnych metod prognozowania, biorąc pod uwagę identyczny zestaw danych historycznych. Poniższe przykłady wykorzystują takie same dane o sprzedaży w 2004 i 2005 roku, aby uzyskać prognozę sprzedaży w 2006 roku. Obok przewidywanej kalkulacji, każdy przykład zawiera symulowaną prognozę dla okresu trzymiesięcznego okresu rozliczeniowego (opcja 193), która jest następnie wykorzystywana do procentu dokładności i średnich odchyleń bezwzględnych (rzeczywiste obroty w porównaniu z prognozą symulowaną). A.2 Prognoza wyników Kryteria W zależności od wyboru opcji przetwarzania oraz tendencji i wzorców istniejących w danych o sprzedaży, niektóre metody prognozowania będą działały lepiej niż inne dla danego zbioru danych historycznych. Metoda prognozowania odpowiednia dla jednego produktu może być nieodpowiednia dla innego produktu. Jest mało prawdopodobne, aby metoda prognozowania zapewniająca dobre wyniki w jednym etapie cyklu życia produktu pozostanie właściwa przez cały cykl życia. Można wybrać jedną z dwóch metod oceny bieżącej skuteczności metod prognozowania. Są to średnie odchylenia bezwzględne (MAD) i procent dokładności (POA). Obie te metody oceny skuteczności wymagają historycznych danych dotyczących sprzedaży dla określonego przez użytkownika okresu. Ten okres czasu nazywa się okresem holdout lub period best fit (PBF). Dane w tym okresie są wykorzystywane jako podstawa do rekomendowania, które z metod prognozowania będą wykorzystywane przy przygotowywaniu kolejnej prognozy prognozy. To zalecenie jest specyficzne dla każdego produktu i może się zmieniać z jednego generowania prognozy do następnego. Obydwa prognozowane metody oceny skuteczności są przedstawione na stronach następujących przykładów dwunastu metod prognozowania. A.3 Metoda 1 - Określony Procent W porównaniu z poprzednim rokiem Ta metoda pomnożona przez dane z poprzedniego roku o współczynnik określony przez użytkownika, na przykład o 1,10 dla 10 lub o 0,97 dla trzech obniżek. Wymagana historia sprzedaży: rok do obliczenia prognozy plus określona liczba okresów czasu dla oceny przewidywanych wyników (opcja 19). A.4.1 Prognoza Kalkulacja Zakres historii sprzedaży do wykorzystania przy obliczaniu współczynnika wzrostu (opcja przetwarzania 2a) 3 w tym przykładzie. Suma trzech miesięcy 2005 r .: 114 119 137 370 Suma tych samych trzech miesięcy w roku poprzednim: 123 139 133 395 Obliczony współczynnik 370395 0,9367 Oblicz prognozy: styczeń 2005 r. Sprzedaż 128 0,9367 119,8036 lub około 120 lutego 2005 r. Sprzedaż 117 0.9367 109.5939 lub około 110 marca 2005 r. Sprzedaż 115 0.9367 107.7205 lub około 108 A.4.2 Symulowany obliczenia prognozy Suma trzech miesięcy 2005 r. Przed okresem utrzymywania rezerwy (lipiec, sierpień, wrzesień): 129 140 131 400 Suma tych samych trzech miesięcy dla poprzedni rok: 141 128 118 387 Obliczony współczynnik 400387 1.033591731 Oblicz prognozę symulacji: październik 2004 r. sprzedaż 123 1.033591731 127.13178 listopad 2004 r. sprzedaż 139 1.033591731 143.66925 grudzień 2004 r. sprzedaż 133 1.033591731 137.4677 A.4.3 Procent dokładności Obliczenia POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Średnia obliczalność odchylenia bezwzględnego MAD (127.13178 - 114 143.66925 - 119 137.4677 - 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Metoda 3 - W ubiegłym roku do tego roku Ta metoda kopiuje dane sprzedaży z poprzedniego roku na następny rok. Wymagana historia sprzedaży: rok do obliczenia prognozy wraz z liczbą okresów czasu wyznaczonych do oceny prognozy (opcja 19). A.6.1 Prognoza Obliczanie Liczba okresów, które należy uwzględnić w średniej (opcja przetwarzania 4a) 3 w tym przykładzie Dla każdego miesiąca prognozy średnie dane z poprzednich trzech miesięcy. Prognoza stycznia: 114 119 137 370, 370 3 123.333 lub 123 lutego prognoza: 119 137 123 379, 379 3 126.333 lub 126 Marzec prognoza: 137 123 126 379, 386 3 128.667 lub 129 A.6.2 Symulowana prognoza Obliczanie sprzedaży październik 2005 (129 140 133) 3 133.3333 listopad 2005 sprzedaż (140 131 114) 3 128.3333 grudzień 2005 sprzedaż (131 114 119) 3 121.3333 A.6.3 Procent dokładności Obliczenia POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Średni bezwzględny Obliczanie odchylenia MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Metoda 5 - Przybliżenie liniowe Zbliżenie liniowe oblicza trend w oparciu o dwa punkty danych historii sprzedaży. Te dwa punkty definiują prostą linię trendu przewidzianą w przyszłości. Użyj tej metody z ostrożnością, ponieważ długie prognozy są wykorzystywane przez małe zmiany w zaledwie dwóch punktach danych. Wymagana historia sprzedaży: liczba okresów uwzględnienia w regresji (opcja przetwarzania 5a) plus 1 plus liczba okresów oceny wyników prognozy (opcja 19). A.8.1 Prognoza Obliczanie Liczba okresów uwzględnienia w regresji (opcja przetwarzania 6a) 3 w tym przykładzie Dla każdego miesiąca prognozy dodaj wzrost lub spadek w określonych przedziałach czasu przed okresem holdout poprzedniego okresu. Average of the previous three months (114 119 137)3 123.3333 Summary of the previous three months with weight considered (114 1) (119 2) (137 3) 763 Difference between the values 763 - 123.3333 (1 2 3) 23 Ratio (12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 232 11.5 Value2 Average - value1 ratio 123.3333 - 11.5 2 100.3333 Forecast (1 n) value1 value2 4 11.5 100.3333 146.333 or 146 Forecast 5 11.5 100.3333 157.8333 or 158 Forecast 6 11.5 100.3333 169.3333 or 169 A.8.2 Simulated Forecast Calculation October 2004 sales: Average of the previous three months (129 140 131)3 133.3333 Summary of the previous three months with weight considered (129 1) (140 2) (131 3) 802 Difference between the values 802 - 133.3333 (1 2 3) 2 Ratio (12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 22 1 Value2 Average - value1 ratio 133.3333 - 1 2 131.3333 Forecast (1 n) value1 value2 4 1 131.3333 135.3333 November 2004 sales Average of the previous three months (140 131 114)3 128.3333 Summary of the previous three months with weight considered (140 1) (131 2) (114 3) 744 Difference between the values 744 - 128.3333 (1 2 3) -25.9999 Value1 DifferenceRatio -25.99992 -12.9999 Value2 Average - value1 ratio 128.3333 - (-12.9999) 2 154.3333 Forecast 4 -12.9999 154.3333 102.3333 December 2004 sales Average of the previous three months (131 114 119)3 121.3333 Summary of the previous three months with weight considered (131 1) (114 2) (119 3) 716 Difference between the values 716 - 121.3333 (1 2 3) -11.9999 Value1 DifferenceRatio -11.99992 -5.9999 Value2 Average - value1 ratio 121.3333 - (-5.9999) 2 133.3333 Forecast 4 (-5.9999) 133.3333 109.3333 A.8.3 Percent of Accuracy Calculation POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Mean Absolute Deviation Calculation MAD (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 Method 7 - Secon d Degree Approximation Linear Regression determines values for a and b in the forecast formula Y a bX with the objective of fitting a straight line to the sales history data. Second Degree Approximation is similar. However, this method determines values for a, b, and c in the forecast formula Y a bX cX2 with the objective of fitting a curve to the sales history data. This method may be useful when a product is in the transition between stages of a life cycle. For example, when a new product moves from introduction to growth stages, the sales trend may accelerate. Because of the second order term, the forecast can quickly approach infinity or drop to zero (depending on whether coefficient c is positive or negative). Therefore, this method is useful only in the short term. Forecast specifications: The formulae finds a, b, and c to fit a curve to exactly three points. You specify n in the processing option 7a, the number of time periods of data to accumulate into each of the three points. In this example n 3. Therefore, actual sales data for April through June are combined into the first point, Q1. July through September are added together to create Q2, and October through December sum to Q3. The curve will be fitted to the three values Q1, Q2, and Q3. Required sales history: 3 n periods for calculating the forecast plus the number of time periods required for evaluating the forecast performance (PBF). Number of periods to include (processing option 7a) 3 in this example Use the previous (3 n) months in three-month blocks: Q1(Apr - Jun) 125 122 137 384 Q2(Jul - Sep) 129 140 131 400 Q3(Oct - Dec) 114 119 137 370 The next step involves calculating the three coefficients a, b, and c to be used in the forecasting formula Y a bX cX2 (1) Q1 a bX cX2 (where X 1) a b c (2) Q2 a bX cX2 (where X 2) a 2b 4c (3) Q3 a bX cX2 (where X 3) a 3b 9c Solve the three equations simultaneously to find b, a, and c: Subtract equation (1) from equation (2) and solve for b (2) - (1) Q2 - Q1 b 3c Substitute this equation for b into equation (3) (3) Q3 a 3(Q2 - Q1) - 3c c Finally, substitute these equations for a and b into equation (1) Q3 - 3(Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2)2 The Second Degree Approximation method calculates a, b, and c as follows: a Q3 - 3(Q2 - Q1) 370 - 3(400 - 384) 322 c (Q3 - Q2) (Q1 - Q2)2 (370 - 400) (384 - 400)2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23)X2 January thru March forecast (X4): (322 340 - 368)3 2943 98 per period April thru June forecast (X5): (322 425 - 575)3 57.333 or 57 per period July thru September forecast (X6): (322 510 - 828)3 1.33 or 1 per period October thru December (X7) (322 595 - 11273 -70 A.9.2 Simulated Forecast Calculation October, November and December, 2004 sales: Q1(Jan - Mar) 360 Q2(Apr - Jun) 384 Q3(Jul - Sep) 400 a 400 - 3(384 - 360) 328 c (400 - 384) (360 - 384)2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Percent of Accuracy Calculation POA (136 136 136) (114 119 137) 100 110.27 A.9.4 Mean Absolute Deviation Calculation MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 Method 8 - Flexible Method The Flexible Method (Percent Over n Months Prior) is similar to Method 1, Percent Over Last Year. Both methods multiply sales data from a previous time period by a user specified factor, then project that result into the future. In the Percent Over Last Year method, the projection is based on data from the same time period in the previous year. The Flexible Method adds the capability to specify a time period other than the same period last year to use as the basis for the calculations. Multiplication factor. For example, specify 1.15 in the processing option 8b to increase the previous sales history data by 15. Base period. For example, n 3 will cause the first forecast to be based upon sales data in October, 2005. Minimum sales history: The user specified number of periods back to the base period, plus the number of time periods required for evaluating the forecast performance (PBF). A.10.4 Mean Absolute Deviation Calculation MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Method 9 - Weighted Moving Average The Weighted Moving Average (WMA) method is similar to Method 4, Moving Average (MA). However, with the Weighted Moving Average you can assign unequal weights to the historical data. The method calculates a weighted average of recent sales history to arrive at a projection for the short term. More recent data is usually assigned a greater weight than older data, so this makes WMA more responsive to shifts in the level of sales. However, forecast bias and systematic errors still do occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products rather than for products in the growth or obsolescence stages of the life cycle. n the number of periods of sales history to use in the forecast calculation. For example, specify n 3 in the processing option 9a to use the most recent three periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. It results in a stable forecast, but will be slow to recognize shifts in the level of sales. On the other hand, a small value for n (such as 3) will respond quicker to shifts in the level of sales, but the forecast may fluctuate so widely that production can not respond to the variations. The weight assigned to each of the historical data periods. The assigned weights must total to 1.00. For example, when n 3, assign weights of 0.6, 0.3, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). MAD (133.5 - 114 121.7 - 119 118.7 - 137) 3 13.5 A.12 Method 10 - Linear Smoothing This method is similar to Method 9, Weighted Moving Average (WMA). However, instead of arbitrarily assigning weights to the historical data, a formula is used to assign weights that decline linearly and sum to 1.00. The method then calculates a weighted average of recent sales history to arrive at a projection for the short term. As is true of all linear moving average forecasting techniques, forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products rather than for products in the growth or obsolescence stages of the life cycle. n the number of periods of sales history to use in the forecast calculation. This is specified in the processing option 10a. For example, specify n 3 in the processing option 10b to use the most recent three periods as the basis for the projection into the next time period. The system will automatically assign the weights to the historical data that decline linearly and sum to 1.00. For example, when n 3, the system will assign weights of 0.5, 0.3333, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). A.12.1 Forecast Calculation Number of periods to include in smoothing average (processing option 10a) 3 in this example Ratio for one period prior 3(n2 n)2 3(32 3)2 36 0.5 Ratio for two periods prior 2(n2 n)2 2(32 3)2 26 0.3333.. Ratio for three periods prior 1(n2 n)2 1(32 3)2 16 0.1666.. January forecast: 137 0.5 119 13 114 16 127.16 or 127 February forecast: 127 0.5 137 13 119 16 129 March forecast: 129 0.5 127 13 137 16 129.666 or 130 A.12.2 Simulated Forecast Calculation October 2004 sales 129 16 140 26 131 36 133.6666 November 2004 sales 140 16 131 26 114 36 124 December 2004 sales 131 16 114 26 119 36 119.3333 A.12.3 Percent of Accuracy Calculation POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Mean Absolute Deviation Calculation MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Method 11 - Exponential Smoothing This method is similar to Method 10, Linear Smoothing. In Linear Smoothing the system assigns weights to the historical data that decline linearly. In exponential smoothing, the system assigns weights that exponentially decay. The exponential smoothing forecasting equation is: Forecast a(Previous Actual Sales) (1 - a) Previous Forecast The forecast is a weighted average of the actual sales from the previous period and the forecast from the previous period. a is the weight applied to the actual sales for the previous period. (1 - a) is the weight applied to the forecast for the previous period. Valid values for a range from 0 to 1, and usually fall between 0.1 and 0.4. The sum of the weights is 1.00. a (1 - a) 1 You should assign a value for the smoothing constant, a. If you do not assign values for the smoothing constant, the system calculates an assumed value based upon the number of periods of sales history specified in the processing option 11a. a the smoothing constant used in calculating the smoothed average for the general level or magnitude of sales. Valid values for a range from 0 to 1. n the range of sales history data to include in the calculations. Generally one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 3) was chosen in order to reduce the manual calculations required to verify the results. Exponential smoothing can generate a forecast based on as little as one historical data point. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). A.13.1 Forecast Calculation Number of periods to include in smoothing average (processing option 11a) 3, and alpha factor (processing option 11b) blank in this example a factor for the oldest sales data 2(11), or 1 when alpha is specified a factor for the 2nd oldest sales data 2(12), or alpha when alpha is specified a factor for the 3rd oldest sales data 2(13), or alpha when alpha is specified a factor for the most recent sales data 2(1n), or alpha when alpha is specified November Sm. Avg. a(October Actual) (1 - a)October Sm. Avg. 1 114 0 0 114 December Sm. Avg. a(November Actual) (1 - a)November Sm. Avg. 23 119 13 114 117.3333 January Forecast a(December Actual) (1 - a)December Sm. Avg. 24 137 24 117.3333 127.16665 or 127 February Forecast January Forecast 127 March Forecast January Forecast 127 A.13.2 Simulated Forecast Calculation July, 2004 Sm. Avg. 22 129 129 August Sm. Avg. 23 140 13 129 136.3333 September Sm. Avg. 24 131 24 136.3333 133.6666 October, 2004 sales Sep Sm. Avg. 133.6666 August, 2004 Sm. Avg. 22 140 140 September Sm. Avg. 23 131 13 140 134 October Sm. Avg. 24 114 24 134 124 November, 2004 sales Sep Sm. Avg. 124 September 2004 Sm. Avg. 22 131 131 October Sm. Avg. 23 114 13 131 119.6666 November Sm. Avg. 24 119 24 119.6666 119.3333 December 2004 sales Sep Sm. Avg. 119.3333 A.13.3 Percent of Accuracy Calculation POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Mean Absolute Deviation Calculation MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Method 12 - Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed averaged adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. a the smoothing constant used in calculating the smoothed average for the general level or magnitude of sales. Valid values for alpha range from 0 to 1. b the smoothing constant used in calculating the smoothed average for the trend component of the forecast. Valid values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast a and b are independent of each other. They do not have to add to 1.0. Minimum required sales history: two years plus the number of time periods required for evaluating the forecast performance (PBF). Method 12 uses two exponential smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal factor. A.14.1 Forecast Calculation A) An exponentially smoothed average MAD (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Evaluating the Forecasts You can select forecasting methods to generate as many as twelve forecasts for each product. Each forecasting method will probably create a slightly different projection. When thousands of products are forecast, it is impractical to make a subjective decision regarding which of the forecasts to use in your plans for each of the products. The system automatically evaluates performance for each of the forecasting methods that you select, and for each of the products forecast. You can choose between two performance criteria, Mean Absolute Deviation (MAD) and Percent of Accuracy (POA). MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a user specified period of time. This period of recent history is called a holdout period or periods best fit (PBF). To measure the performance of a forecasting method, use the forecast formulae to simulate a forecast for the historical holdout period. There will usually be differences between actual sales data and the simulated forecast for the holdout period. When multiple forecast methods are selected, this same process occurs for each method. Multiple forecasts are calculated for the holdout period, and compared to the known sales history for that same period of time. The forecasting method producing the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in your plans. This recommendation is specific to each product, and might change from one forecast generation to the next. A.16 Mean Absolute Deviation (MAD) MAD is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD has shown to be the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, there is a simple mathematical relationship between MAD and two other common measures of distribution, standard deviation and Mean Squared Error: A.16.1 Percent of Accuracy (POA) Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently two low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high, would be an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. Error Actual - Forecast When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, it is not so important to eliminate forecast errors as it is to generate unbiased forecasts. However in service industries, the above situation would be viewed as three errors. The service would be understaffed in the first period, then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. The summation over the holdout period allows positive errors to cancel negative errors. When the total of actual sales exceeds the total of forecast sales, the ratio is greater than 100. Of course, it is impossible to be more than 100 accurate. When a forecast is unbiased, the POA ratio will be 100. Therefore, it is more desirable to be 95 accurate than to be 110 accurate. The POA criteria select the forecasting method that has a POA ratio closest to 100. Scripting on this page enhances content navigation, but does not change the content in any way.
Comments
Post a Comment